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Abstract
We obtain an exact equation for a smoothed phase space distribution function
for a system of N non-relativistic particles of unit mass obeying Hamiltonian
dynamics. We show that this equation is well posed in only one time direction
in the sense of the continuous dependence of the solution on the initial data.
We interpret the ill-posedness of this equation in the backward time direction
as the manifestation of irreversibility of the observable statistical quantities for
systems obeying time-reversible dynamical laws.

PACS numbers: 0520, 4520

1. Introduction

Perhaps one of the most fundamental problems in physics is understanding the nature of
irreversibility of physical processes. After more than 100 years since its formulation it
remains a mystery how in the world where all the dynamical laws are time reversible we
have overwhelming evidence of irreversible phenomena. Since the works of Maxwell and
Boltzmann [1], this problem has been the subject of the debate which goes on to the present
day (for a recent discussion, see [2, 3] and references therein).

It should be pointed out that from the physical point of view the contradiction between
the reversibility of the dynamical laws of classical mechanics and the irreversibility of the
observed physical phenomena has essentially been resolved already in the works of Maxwell
and Boltzmann. It arises due to one’s essential inability to control the initial conditions for
the dynamical equations exactly. On the timescale of the observations a small uncertainty in
the initial conditions may result in large deviations in the observable quantities, so one has
to perform averaging to extract information which does not appear to be strongly affected by
this uncertainty. Therefore, one has to go to the probabilistic (statistical) description which
predicts the dynamics of only certain macroscopic quantities (for a thorough discussion on this
subject, see [2]).
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The foundation for the link between the dynamics and the statistical mechanics was laid in
the mid-1940s in the works of Bogoliubov, Born, Green and Kirkwood [4]. They recognized
the importance of introducing random initial conditions in passing to the statistical description
in a general dynamical setting. This allowed the derivation of the irreversible kinetic equations
from the original dynamical equations in certain limits [5]. At roughly the same time Landau
derived the irreversible time-dependent density correlation function and the famous Landau
damping for the ideal gas and plasma [6]. However, the transition to the statistical description
introduced by Bogoliubov et al turned out to lead once again to the time-reversible equations.
This creates an apparent mathematical paradox, since from the mathematical point of view
reversible equations fundamentally cannot lead to irreversible behaviours.

The reason for the time reversibility in the statistical description introduced by Bogoliubov
et al is that it is in one-to-one correspondence with the original system’s dynamics. In other
words, this statistical description does not involve any loss of the dynamical information, so it
is still a microscopic description and does not exhibit macroscopic irreversible behaviour. On
the other hand, if the system’s dynamics is mixing, the above-mentioned statistical description
becomes more and more complicated with time. So, in the physical context one has to perform
some kind of regularization or smoothing in order to extract quantities which correspond to
those measured in the experiments. This smoothing introduces loss of information about small
regions in the phase space and therefore should lead to the breakdown of time reversibility for
the smoothed quantities.

In the present paper we show that a particular kind of smoothing which formally does
not produce any loss of information leads to a closed equation for the smoothed probability
density, which is irreversible.

2. Smoothed distribution function

We begin with a dynamical system ofN particles of unit mass with coordinates xn and momenta
pn obeying Hamilton equations

ẋn = ∂H
∂pn

ṗn = −∂H
∂xn

(1)

with the Hamiltonian

H =
∑
n

p2
n

2
+ U(x1, x2, . . . , xN). (2)

A statistical description of such a system is obtained by introducing a random distribution of
initial data in the phase space. Then, from the Liouville theorem one obtains that the phase
space distribution function f (x, p, t), where x andp denote theN -component vectors, evolves
according to the equation

∂f

∂t
+ {f,H } = 0 (3)

where {f,H } is the Poisson bracket. Equation (3) is time reversible. This immediately follows
from the symmetry of this equation with respect to the transformation

x → x p→ −p t → −t. (4)

This means that f must retain the memory of the initial conditions for all times.
To get to the source of the distinction between the reversible microscopic behaviour and

the irreversible macroscopic one, we need to go back to the derivation of equation (3) in the
physical context. Two issues have to be considered here: preparation of the initial conditions
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and measurement of the state of the system at a given moment. Let us address the issue
of measurement first. It is clear that in any experiment the state of the system, that is, the
coordinate of a point in the phase space, cannot be measured exactly, but will have some
uncertainty. In a measurement, one is certain to lose information about points that are very
close in the phase space. Therefore, if at a moment t an experimentalist is given a distribution
f (x, p, t) of the points in the phase space, he will actually measure a function f̄ , where

f̄ (x, p, t) =
∫
Jε(x − x ′, p − p′)f (x ′, p′, t) dx ′ dp′ (5)

where Jε is the probability density of the error in the measurement and ε is the measure of the
error, with Jε approaching a δ-function as ε → 0. This formula implies averaging over the
realizations of the phase space points and repeated measurements. In other words, f is not a
physically observable quantity.

Let us now turn to the issue of the preparation of the initial conditions. In order to get
the system into a given point of the phase space, an experimentalist starts from an arbitrary
state of the system, that is, an arbitrary phase space point. He then measures the state of the
system and applies time-dependent control to move the phase space point towards the target
point. Once the desired degree of closeness between the position of the phase space point and
the target is achieved, the control is removed and the system is allowed to evolve according
to equations (1). It is clear that because of the uncertainty in the measurements, one can
never achieve such a control that will move the point exactly to the target position. Instead, it
is natural to expect a Gaussian distribution of phase space points in the ε-neighbourhood of
the target point. Then, on the scale of ε or greater one can approximate an arbitrary smooth
distribution function by sampling different points of the phase space. In other words, the initial
condition f0(x, p) = f (x, p, 0) for equation (3) should have the form

f0(x, p) =
∑
i

wi

(2πcε2)N
exp

(
− (p − pi)2

2cε2
− (x − xi)2

2cε2

)
(6)

where wi is the weight of an ith sample point, xi, pi are its phase space coordinates and c is a
positive constant.

Given the initial conditions of the form of equation (6), we wish to study the observed
(macroscopic) distribution function f̄ generated by the unobservable (microscopic) distribution
function f which is the solution of equation (3) with these initial conditions. One issue here is
whether one can obtain a closed description for the dynamics of f̄ . If ε is small, one can use
equation (3) to write down an infinite hierarchy of equations for f̄ and the higher moments.
One can further introduce a closure to this hierarchy assuming that f is a sufficiently smooth
function and thus obtain a closed equation for f̄ and arbitrary Jε .

Another issue is whether the obtained equation for f̄ is well posed and whether it is valid
for all times. The latter is especially important, since the irreversible behaviours should be
manifested at long times. It is clear that the closure approximations discussed above should in
general break down at long times for mixing systems since the original distribution function f
becomes highly oscillatory at long times.

We circumvent all these difficulties by considering a special form of Jε :

Jε(x − x ′, p − p′) = (2πε2)−N/2δ(x − x ′)e−(p−p′)2/2ε2
. (7)

This special choice of Jε has an important property that will be used below.

Lemma 2.1. Let Jε be given by equation (7), f (x, p, t) bounded, and f̄ given by equation (5).
Then

(2πε2)−N/2
∫
(pn − p′

n)e
−(p−p′)2/2ε2

f (x, p′, t) dp′ = −ε2 ∂f̄

∂pn
. (8)
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Proof. The proof is obtained by differentiating f̄ in equation (5) with Jε from equation (7)
with respect to pn. �

It turns out that for this particular form of Jε one can obtain a closed equation for f̄ exactly
which is thus valid for all times. This result is formulated in the following:

Theorem 2.2. Let f (x, p, t) ∈ C1 be a solution of equation (3) with the Hamiltonian from
equation (2), vanishing outside a compact subset of the phase space. Then the averaged
distribution function f̄ (x, p, t) obtained from equation (5) with Jε given by equation (7)
satisfies

∂f̄

∂t
+ {f̄ , H } = −ε2

∑
n

∂2f̄

∂xn∂pn
. (9)

Proof. Equation (3) with the Hamiltonian from equation (2) is explicitly written as follows:
∂f

∂t
+

∑
n

pn
∂f

∂xn
−

∑
n

∂U

∂xn

∂f

∂pn
= 0. (10)

Let us multiply this equation by (2πε2)−N/2e−(p−p′)2/2ε2
and integrate over p. If we then

add and subtract a term −(2πε2)−N/2
∫
p′
ne

−(p−p′)2/2ε2
f (x, p, t) dp and use equation (5), we

obtain an equation that relates f̄ (x, p′, t) and f (x, p, t)

∂f̄

∂t
+

∑
n

p′
n

∂f̄

∂xn
− (2πε2)−N/2

∑
n

∂U

∂xn

∫
e−(p−p′)2/2ε2 ∂f

∂pn
dp

= − (2πε2)−N/2
∑
n

∫
(pn − p′

n)e
−(p−p′)2/2ε2 ∂f

∂xn
dp. (11)

Let us now integrate the third term in the left-hand side of this equation by parts, taking into
account that the surface integral vanishes, and swap p and p′. We obtain for f̄ (x, p, t)

∂f̄

∂t
+

∑
n

pn
∂f̄

∂xn
+ (2πε2)−N/2ε−2

∑
n

∂U

∂xn

∫
(pn − p′

n)e
−(p−p′)2/2ε2

f (x, p′, t) dp′

= (2πε2)−N/2
∑
n

∫
(pn − p′

n)e
−(p−p′)2/2ε2 ∂f (x, p′, t)

∂xn
dp′. (12)

Now, applying the result of lemma 2.1 to the integrals, we arrive at equation (9). �
Remark 2.1. Equation (9) is valid for all ε, so one does not have to restrict oneself to the case
of ε small.

Remark 2.2. Note that a similar kind of smoothing in a different context was introduced by
Klimas as a method for solving numerically the Vlasov equation [7].

Remark 2.3. The derivation of equation (9) did not rely on the fact that the system is
conservative, so it can be extended to the case when the interaction potential U in the
Hamiltonian is time dependent.

Observe that for Jε from equation (7) the correspondence between f and f̄ is one-to-one
since the Fourier transform of Jε never vanishes, so formally there is no information loss when
going from f to f̄ and the solutions of equation (9) are in exact correspondence with those of
equation (3). What happens is that the information about the shorter and shorter distances gets
progressively more hidden in f̄ , so one can talk about the effective loss of information about
arbitrarily short distances. Note, however, that this is different from coarse-graining, where
the analogue of f̄ would be obtained by averaging over finite regions of the phase space, thus
leading to the actual information loss.
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3. Well-posedness of the initial-value problem

Equation (9) still formally possesses symmetry with respect to the transformation in
equation (4). It has to be solved as an initial-value problem. Here, however, we come to
the difficulty that this problem is actually ill posed. This is due to the fact that now we have a
second-order hyperbolic differential operator in the right-hand side of equation (9), which in
general leads to the blowup of the short-scale modes of f̄ in arbitrarily short times. Indeed,
let us introduce the Fourier transform

f̄kl(t) =
∫

eik·x+il·pf̄ (x, p, t) dx dp (13)

where k and l areN -component vectors. For large |l| and |k| the right-hand side of equation (9)
will dominate, so we will have approximately f̄kl(t) � f̄kl(0)eε2k·lt . For k = l we will have
f̄kl ∼ eε

2k2t . The difficulty here is similar to the one that appears in the problem of negative
diffusion. So, we have to make more precise what we actually mean by equation (9).

To do this, we should recall that the physically relevant initial conditions for equation (3)
and, therefore, equation (9) must have the form given by equation (6). These initial conditions
possess a very high degree of regularity. It is expressed in the very fast decay of f̄ in the
Fourier space: |f̄kl(0)|2 ∼ e−cε2(k2+l2). In this situation the growth of the short-scale modes
can actually be controlled for finite times. Indeed, with these initial conditions we will have
|f̄kl(t)|2 ∼ e2ε2k·lt−cε2(k2+l2) � e−ε2(c−t)(k2+l2).

More formally, we require that the initial condition f̄0 be in the Banach space L2
c :

Definition 3.1. Let L2
c denote the Banach space of functions with the norm

||f̄ ||2L2
c
=

∫
dk

(2π)N
dl

(2π)N
ecε

2(k2+l2)|f̄kl|2 (14)

where f̄kl are defined as in equation (13), and c > 0 is a constant.

The weighted L2-norm ensures sufficiently rapid decay of |f̄kl| for large |k|, |l|.
Lemma 3.2. The relationships

L2
c ⊆ L2

c′ ⊆ L2 (15)

hold for c � c′ � 0.

Proof. The proof follows from the obvious estimates∫
dk

(2π)N
dl

(2π)N
|f̄kl|2 �

∫
dk

(2π)N
dl

(2π)N
ec

′ε2(k2+l2)|f̄kl|2

�
∫

dk

(2π)N
dl

(2π)N
ecε

2(k2+l2)|f̄kl|2 (16)

for c � c′ � 0. �
Let us introduce the following notation:

L = −ε2
∑
n

∂2

∂xn∂pn
. (17)

The operator L has the following property:

Lemma 3.3. L is a bounded operator from L2
c to L2

c′ with c > c′. Moreover, the following
estimate holds:

||Lf̄ ||L2
c′

� 1

c − c′ ||f̄ ||L2
c
. (18)
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Proof. This can be seen from the following inequalities:

||Lf̄ ||2
L2
c′

�
∫

dk

(2π)N
dp

(2π)N
ε4k2l2ec

′ε2(k2+l2)|f̄kl|2

=
∫

dk

(2π)N
dp

(2π)N
ε4k2l2e−ε2(c−c′)(k2+l2)|f̄kl|2ecε

2(k2+l2)

� 1

(c − c′)2
∫

dk

(2π)N
dp

(2π)N
ecε

2(k2+l2)|f̄kl|2

= 1

(c − c′)2 ||f̄ ||2L2
c
. (19)

�

Let us also introduce the fundamental solution E(t) of equation (3):

E(t) = θ(t)δ(x − x̄(t))δ(p − p̄(t)) (20)

where x̄(t), p̄(t) satisfy equations (1) with the initial conditions x̄(0) = x ′, p̄(0) = p′; θ(t) is
the Heaviside step. Thus, the solution of equation (3) with the initial dataf (x, p, 0) = f0(x, p)

is f (x, p, t) = E(t) ∗ f0(x, p), where ‘∗’ denotes the convolution in the phase space. What
we are going to show below is that under certain assumptions on E(t) and f̄0, the initial-value
problem for equation (9) is well posed in a certain sense for finite times.

Theorem 3.4. Let c > 0, f̄0 ∈ L2
c ∩ C∞(R2N), E(t) ∗ f̄ ∈ C∞(R2N) × C1[0, T ] for

f̄ ∈ C∞(R2N), and for any 0 < r � c
||E(t) ∗ f̄ ||L2

α(t)r
� M||f ||L2

r
0 � t � T (21)

where M and T are constants independent of r , and 0 < α(t) < 1 is a function also
independent of r . Also, let α(t) be Lipschitz continuous on the interval 0 � t � T . Then
for any 0 < c′ < c there exists a unique solution f̄ (x, p, t) of equation (9) with the initial
data f̄ (x, p, 0) = f̄0(x, p) that is uniformly bounded in L2

c′ on a sufficiently small interval
0 � t � T ′.

Proof. We use the standard perturbation argument to prove the existence and uniqueness of
the solution of equation (9). We first write the equivalent integral equation

f̄ (x, p, t) = E(t) ∗ f̄0(x, p) +
∫ t

0
E(t − t ′) ∗ Lf̄ (x, p, t ′) dt ′. (22)

Any solution of equation (22) that lies in C2(R2N) × C1[0, T ′] is a classical solution
of equation (9). Since L2

c′ ⊂ H∞(R2N), for each function f̄ ∈ L2
c′ there is a unique function

f̃ ∈ C∞(R2N), such that f̃ = f̄ almost everywhere. By this and the assumption of smoothness
of E(t)∗, for any solution f̄ (·, t) ∈ L2

c′ of equation (22) there is a unique classical solution of
equation (9).

The formal solution of equation (22) has the form

f̄ (x, p, t) = E(t) ∗ f̄0 +
∞∑
n=1

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

×E(t − t1) ∗ LE(t1 − t2) ∗ L · · · E(tn) ∗ f̄0(x, p). (23)

Let us show that under the assumptions of the theorem this series converges in L2
c′ on a

sufficiently small time interval. Consider the nth term f̄n in the series in equation (23).
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According to equation (21) and lemma 3.3, the operator E(t − t1) ∗ LE(t1 − t2) ∗ L · · · E(tn)∗
is a bounded operator from L2

c to L2
cn

, where

cn = c
(

1 − at
n

)n
α(t − t1)α(t1 − t2) · · ·α(tn) (24)

and a > 0 is a fixed constant. Here we treated the operator L as an operator from L2
r to

L2
r(1−at/n) for 0 < r � c.

For any value of a it is possible to choose a sufficiently small interval 0 � t � T ′ such
that cn � c′ for any n. Indeed, let us denote the Lipschitz constant for α(t) as K . Obviously,
α(0) = 1. Then, for sufficiently small T ′ � T we will have α(t) � 1 − Kt � 1

2 for all t in
the interval. Also, T ′ can be chosen so small that 1 − at

n
� 1

2 for all n as well. Let us take
the natural logarithm of both sides of equation (24). It is not difficult to verify that for any
1
2 � x � 1 we have ln x � −2(1 − x) for all x in this interval. Then, taking into account that
0 � tn � t for all tn, we can write

ln cn � ln c − 2at − 2K(t − t1 + t1 − t2 + · · · + tn) (25)

so we have

cn � ce−2(a+K)t . (26)

From this formula it is clear that for any 0 < c′ < c and any a it is possible to choose
the value of T ′ such that cn > c′ for all 0 � t � T ′ and any n. This and the fact that
E(t) ∗ f̄0 ∈ L2

cα(t) ⊆ L2
c(1−Kt) means that f̄ from equation (23) is in L2

c′ for sufficiently small
times, if the series converges.

Let us now show that the series in equation (23) indeed converges. From lemma 3.3 we
have

||Lf̄ ||L2
r(1− atn )

� n

atr
||f̄ ||L2

r
� n

atc′
||f̄ ||L2

r
(27)

for any c′ < r < c. Then, we have the following estimate for ||f̄n||L2
c′

:

||f̄n||L2
c′

� ||f̄0||L2
c

Mn+1nn

antnc′n

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn � ||f̄n||L2

c

(
6M

ac′

)n
(28)

where we used the Stirling formula for large enough n. Since a is arbitrary, we can choose
it so large that the bracket in the right-hand side of equation (28) is less than one, and the
series in equation (23) converges in L2

c′ . By construction, the operator that maps f̄0(x, p) into
f̄ (x, p, t) is a uniformly bounded linear operator from L2

c to L2
c′ for all 0 � t � T ′.

Let us now show that the solution of equation (9) is unique. If the opposite is true, there
must exist a solution f̄ ∈ L2

c′ of equation (22) with f̄0 = 0 on the interval 0 � t � T ′. Then,
from equation (22) we have the following estimate:

||f̄ (x, p, t)||L2
α(t)c′/2

�
(

2Mt

c′

)
max

0�t�T ′
||f̄ (x, p, t)||L2

c′
(29)

where we teated the operator L as an operator fromL2
c′ toL2

c′/2 and used lemma 3.3. Continuing
in this fashion, we get

||f̄ (x, p, t)||L2 � ||f̄ (x, p, t)||L2
c′αn(t)/2n

� max
0�t�T ′

||f̄ (x, p, t)||L2
c′

2nMntn

c′nn!
→ 0 (30)

as n→ ∞. For the classical solution of equation (9), this implies that f̄ = 0. �
Corollary 3.5. The solution continuously depends on the initial data in the sense that small
errors in the initial data that lie in L2

c produce small errors in the solution that lie in L2
c′ .

The assumption of boundedness of the operator E(t)∗ in equation (21) and the Lipschitz
property of α(t) are the non-trivial assumptions on the dynamics. Note that it is not difficult to
show that these assumptions are satisfied for the system ofN non-interacting particles (U = 0).
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4. Breakdown of time-reversibility

We have proved that under certain assumptions the initial value problem for equation (9) is
well posed for finite times. This well-posedness, however, is time irreversible. Indeed, the
obtained solution f̄ (t) lies in the larger space L2

c′ and not necessarily in the space L2
c in which

the initial condition lies. Remarkably, this statement remains true even in the limit ε → 0, for
which the solution of equation (9) should go to the solution of equation (3)! In other words,
the right-hand side of equation (9) is a singular perturbation to the Liouville equation.

The reason for the breakdown of time reversibility is that although equation (9) is formally
time reversible, this does not extend to the continuous dependence of the solution on the initial
data. Corollary 3.5 guarantees such a dependence in a sense that small perturbations of the
initial conditions that lie in L2

c will transform into small perturbations of the solution in the
larger space L2

c′ , and not necessarily in L2
c . This is the key point of the whole analysis above.

Let us point out that the assumptions of theorem 3.4 already have an irreversible statement
that E(t)∗ maps L2

c into a larger space L2
c′ with c′ = α(t)c < c. This exemplifies the view of

irreversibility as progressive loss of regularity of solutions of equation (3) with time adopted in
this paper. Note, however, that while the unobservable distribution function f becomes more
and more irregular in the limit t → ∞, the observable function f̄ should retain certain degree
of regularity for all times.

Let us demonstrate these points explicitly in the case of non-interacting particles, that is,
when U = 0. When U = 0, equation (9) can be solved exactly. Let us introduce the new
variable x ′ = x − pt . Then, equation (9) can be rewritten as

∂f̄

∂t
= −ε2

∑
n

∂2f̄

∂xn∂pn
+ tε2

∑
n

∂2f̄

∂x2
n

(31)

where the primes were dropped. Introducing the Fourier transform, after simple calculations
we obtain that the solution of equation (31) is

f̄kl(t) = f̄kl(0)e 1
2 ε

2l2− 1
2 ε

2(l−kt)2 . (32)

Thus, at long times f̄kl(t) → 0 for k �= 0, and f̄kl(t) = f̄kl(0) for k = 0, that is, any initial
condition f̄0 relaxes to a uniform distribution in x. Thus, in contrast to equation (3), our
equation (9) is dissipative.

Let us see how the solution of equation (9) with U = 0 and the initial condition in the
form of a single Gaussian peak (equation (6)) in the infinite domain evolves with time relative
to the spaces L2

c . A straightforward calculation shows that the solution will lie in the space L2
c′

with c′ < c̄(t), where

c̄ = 1
2

(
1 + 2c + ct2 −

√
1 − 2ct2 + 4c2t2 + c2t4

)
. (33)

For c > 1 the function c̄(t) is decreasing with time, so the solution indeed moves from the
smaller space L2

c to a larger space L2
c′ for t > 0. Also, observe that according to equation (33),

no matter what the constant c we start with, we will have c̄ → 1 when t → ∞, so L2
1 is

an attracting space in this example. This also means that the observable f̄ will not lose its
regularity at long times, in contrast to the unobservable f , which will leave all the spaces L2

c

as t → ∞.
Let us now go back to the case of general U . The analysis above dealt with the well-

posedness of equation (9) taken in its own right. Recall, however, that the physically relevant
solutions of this equation are those distributions f̄ which are related to f by equations (5)
and (7). So, they a priori possess a high degree of regularity in p. For those physically
relevant distributions one can construct the solutions of equation (9) by first applying the
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inverse of the convolution, then finding f (t) = E(t) ∗ f0, and then applying the convolution
to find f̄ (t). This can be done for arbitrary t assuming that the solutions of equations (1)
extend to infinite times. So, in fact, for physically relevant initial conditions the solution of
equation (9) should in fact exist for all times.

It is not difficult to see that in the case of an anharmonic oscillator with one degree of
freedom the solutions of equation (9) will spread uniformly over the energy surfaces at long
times. Indeed, consider an initial condition for f to be a function which is different from zero
only in a small rectangle close to an energy surface E = const. As time passes, this rectangle
will become distorted and progressively more skewed, until at very late times it will start to
wind around the energy surface. Since the solutions of equation (9) are obtained from f by a
convolution (equation (5)), at long times the values of f̄ in the ε neighbourhood of the energy
surface will be essentially an integral over the entire region where f is nonzero (for small ε).
So, the distribution of f̄ will in fact be spreading over the energy surface. Thus, we can talk
about the onset of the microcanonical distribution in this situation.

An interesting property of the smoothing operation given by equations (5) and (7) is that
it changes the average energy of the system by a constant independent of the distribution f .
Indeed, calculating the averages of H with respect to f and f̄ , we get

E = Eε − N
2
ε2 (34)

where E and Eε are the respective averages, and we used equations (5) and (7). Of course,
the smoothing operation preserves the normalization of f̄ . This allows us to introduce the
Boltzmann entropy Sε :

Sε = −
∫
f̄ ln f̄ dx dp (35)

which is bounded for the normalized distributions f̄ having a finite average energy E.
Substituting this definition into equation (9), we obtain an equation for the rate of change
of this entropy

dSε
dt

= −ε2
∑
n

∫
1

f̄

∂f̄

∂xn

∂f̄

∂pn
dx dp. (36)

One can see from this equation that dSε/dt can have both signs and it is a question whether
Sε can play the role of a Lyapunov functional in the system. This is also a consequence of the
formal reversibility of equation (9). Note, however, that Sε may in fact be a monotonically
increasing function of time for some sets of initial conditions. For example, if one takes
the initial condition to be a single Gaussian peak in equation (6), in the case of the non-
interacting system in an infinite domain one can explicitly calculate Sε as a function of time:
Sε(t) = N ln

√
1 + c + t2 up to a constant. This function is monotonically increasing with

time. It is interesting to note that the growth rate of this function is independent of ε. Also, it is
not difficult to see from the exact solution (equation (32)) that for the system of non-interacting
particles in a finite domain dSε/dt > 0 for sufficiently long times.

The Boltzmann entropy defined in equation (35) allows us to reformulate the question of
irreversibility in the dynamics given by equations (1). Let us introduce the spaces H+, H− and
H0 of all functions f̄ for which the right-hand side of equation (36) is positive, negative or zero,
respectively. In that sense, the space H+ corresponds to the initial conditions that are ‘oriented’
forward in time, the space H− is for backward and the space H0 is for the initial conditions for
which both directions of time are equivalent. Then, the dynamics can be considered irreversible
if H+ is an attracting set. Alternatively, for f̄0 ∈ H+ the dynamics will be irreversible if H+

is an invariant space of equation (9). In general, the question of irreversibility may be studied
from the point of view of the dynamics generated by equation (9) on H0.
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5. Discussion

In conclusion, we have derived an equation for a smoothed phase space distribution function f̄
from equation (3) and shown that with the appropriate initial conditions and certain assumptions
on the dynamics the obtained equation is well posed. However, this well-posedness is shown
to exist only in the forward time direction. We interpret this result as a manifestation of
irreversibility of the dynamics of the physically observable quantities. Of course, this does not
solve the big problem here, which is what this irreversibility is coming from. The latter is an
essential property of the system’s dynamics and has to do with mixing. However, the question
of well-posedness of the ‘macroscopic’ equation for the smoothed phase space distribution
function f̄ seems to give a nice characterization of breaking of the time-reversal symmetry.
This is in contrast with the coarse-graining approach, in which the irreversibility in the coarse-
grained quantities is the consequence of the loss of information during coarse-graining. Note
that the direction of time in our analysis is determined by causality. The latter is incorporated
into the fundamental solution of equation (3) (function θ(t) in equation (20)).

One of the nice features of equation (9) is that because this equation is already irreversible,
it may be used as a more suitable starting point for deriving the kinetic equations as opposed
to the Liouville equation [5]. In particular, one can use equation (9) as a starting point for
deriving the Boltzmann equation. In a rarefied gas the smoothed distribution function f̄ will
obey equation (9) with U = 0 everywhere in the phase space except when the particles are
within the small-interaction region. One can therefore choose ε to be sufficiently small but yet
big enough that the timescale ε−1 associated with the decay of f̄ in a non-interacting system
of size of order 1 (equation (32)) is much smaller than the collision timescale. This means that
on this timescale the smoothed distribution function f̄ will become homogeneous in space.
Yet, when the particles are within the interaction range, the right-hand side of equation (9) will
be a small perturbation, so in these regions the solution of equation (9) will be close to that of
equation (3). One can then retrace the arguments of Bogoliubov [5] to obtain the Boltzmann
equation for the distribution function in the momentum space. This derivation, however, will
not have the weakness that it breaks down after a finite time [5, 8].
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